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The problem of computation of parameters of motion of a thin elastic membrane
under the impact of a rigid body, was considered by various authors (see [1]
together with bibliography) without, however, ylelding a rational solution.
This paper presents a full qualitative analysis of solution of this problem
for the case of normal impact of a circular cone moving with constant velo-
clty on an infinite elastic membrane of constant thickness. Although this
1s the simplest case, it is important, insofar as it br 8 to light the
characteristic features of the problem. In the "membrane” approximation the
thickness of the layer is found to be an unessential parameter, therefore
the problem, as postulated by us, is self-similar and its solution 1s reduc-
ible to the problem for ordinary differential equations.

In the formulation of our problem we shall use the basic relations gilven
in (1]. We shall take the plane y = O in the cylindrical coordinate sys-
tem r , o , y to represent the middle surface of the membrane and we shall
assume the cone to be moving along the oy-axis with constant velocity v,
Then, the equations of motion will be
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where u and w are the displacements of the points of the middle surface
in the y- and r-directions, respectively; r 1s the Lagrangian coordinate
of a point on the middle surface of the membrane, ¢ 1is the time, p 1is the
density of the membrane material, ¢, and a¢ are the stress components
referred to the initial areas of boundaries at which they are applied and
straln components are given by
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For the elastic membrane we have
E E
6t = ;s (et + vee), O = 17— (6o + Ver) (4)

where £ and vy are the Young's modulus and Poisson's coefficilent,
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respectively. In fact, the relations (4) define, in the present case, the
elastic law,

Elimination of stress and strain from (1) to (4) ylelds two equations for u
and w . Supplementary initial conditions are

u(r,) =w@r 0 =0 (5)
and the boundary condition at the point of impact
w0, 8 =0, u (0, 1) = vt )

In addition, functions uy &and w should obviously satisfy the kinematic
conditions resulting from the possible relative positioning of the membrane
and the cone (the membrane may partlally envelope the cone, with the rest
remaining outside the cone). Unknown functions uy and w depend therefore
on the independent varlables r and ¢ and on the parameters 6, Ve, £, v
and p (28 18 the cone angle) of the problem, which is, consequently, self-
similar and has a soclution of the form

u = aytY (z; v, m, 8y), w4+ r=agX (z; v, m, 0,)
_ r . E ) A o Vo
e R O

In this manner our problem is reduced to the determination of functions
X and ¥ satisfying the corresponding ordinary differential equations and
boundary conditions. It can be shown that, in general, three distinct
regions of variation of & exist, and the above functions are defined in
each of these regions in a different way. We shall not be concerned with
the outermost region r > Ggt , 1.e. z> 1 where w=u =0 . In the
region z,<x <1 we have [1]

Y=0, X =z — co, (2), ¢ = const

14+ V1—2z2 V1—z
o1(z) =In p -0 (24 <z <) 8)
This is the region of purely radial motion of the elements of the membrane,
and its outer boundary is formed by the elastic wavefront =z =1 . Its lnner

boundary z = z, and the constant o are not given in advance and should be
determined in the course of solution of the problem. In the reglon
x,,.<2 =z, where the membrane is deflected, without however coming into
contact with the surface of the cone, functions Y and Y are the solution
of

_z[(14+v)z—vXIXR —z(d 4+v—R)YRX 4 vzR(X')2+R[(1 +v)z —vzR— X]

X’ zR{[1+v—R(1—39)]z—vX}
r [X—(14+¥v2] X' +zR( {-v—R) r T TYNe
R = 221 —23) R » Y'= VR (X) (9)

satisfying some boundary conditions which shall be specifled later, at the
points z = z, and 2z = z,, . Equations (9) ar obtalned from (1) to (%)
and (7). The magnitude =z = Z,, defining the polnt of contact between the
membrane and the cone, 1s also unknown.
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Finally, 1n the region 0 < z < z__ the membrane envelopes the surface of
the cone and functions ¥ and Y are gilven by

=U(z)sin®, Y=m—U(z)cos®, R =U/(2)

7»——1
U(z)_4+}vz+clz’*F( LA 1 2) (10)
where A = sin 0, ¢; = const, and F is a hypergeometric function [1]
F,B8,1:2)=1 1'7 (11)

Here it 1s the constant ¢, which is the unknown parameter to be deter-
mined. In thils manner, the sought functions X and Y are defined in the
regions 2z,€ 2z s 1 and O <z s z,, by the finlte formulas (8),(10) and(11)
respectively, and by ordinary differential equations (9) in the intermediate
region z,.< 2z < &, . The cholce of the solution of (9) and the determina-
tion of parameters 2z,,, 2,, ¢ and ¢, should be performed with the ald of
conditions of compatibllity at the polnts 2z = 2z, and =z = z,, . Obviously,
the most suitable conditlons wlll be the conditions of continuity of ¥ and
Y . Further, the usual conservation laws (of mass and momentum) should be
preserved at these points, which correspond, physically, to the expanding
surfaces of discontinuity.

Let us first conslder the conditions at the point =z = 2, . Using the
subscripts 1 and 2 to denote the values at =z < 2z, and =z > 5, , respectively,
we obtain the condition of conservation of mass

B—Xo+2, Xy  B—Xi+z,X1)cosy+(Yi—3z,Y1)siny 9

= (12)
Rz Rl

and the momentum theorem

(B—Xa+ 2,X) (X' — X)) - = Rt - Ko —
—[R+IXi—+veosy  (B=) (13)

—B— X342z, X5

v .
= [Rl + - Xi—(1+ v)] siny (14)
2 *
where b 1s the velocity of propagation of the discontinuity along the
or-axis and y 1s the angle between the meridional elements of the membrane
on both sides of the discontinuity. Supplementing (12) to (14) we have the
obvious equalities

X, =X, Y =0, B=X,, R,=X, (15)
together with the kinematic relationships
Yy X"
siny = — =L _
1= B cosY 7 (16)

Condition (12) becomes, by virtue of (15) and (16), an identity, while
(13) and (1%), together with (8) and the condition Y’# 0, yleld

Xa(2,)—(1 *
Ry(z,) = ? (z‘)(Z*2(-——{;)‘V) :

(17)
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Xl (sz) - Xl(zx) = Ty *6(3*)(’)1 (:b) (18)

o (19)

foll 94 e
(z2) @1’ (24) (27 = 1) = vz, 01 (3y)

In this manner, we have expressed all the unknowns at the polnt =z = =z,
in terms of 2z, . Formula (19) gives the parameter ¢ from (8) in terms of
« » Wwhile the relations {17) and (18), together with the condition X{z}=0,
fully define at =z = z,, the conditlons of transition from (8) to the solu-
tion of (9), which in turn defines the solution of our problem in the region
2,452 s 2,. Next we shall consider the conditions at the point 2z = z,,

x

Equation of the conservation of mass has, in dimensionless variables, the

form (By — X1 24pX1) 5in 8y — (B, — V1 2, Y1) cos 6;
R, o
_ (Br—Xo 4 7, Xy) sin 0 — By — ¥, -+ 2, Yy cos 6, 2
_ = (20)

Here subscripts 1 and 2 denote the limiting values of the corresponding
magnitudes on both sides of the surface of discontinulty and ¢, and 6, are
the angles of inclination of the elements of the membrane on both sides of
the discontinuity, towards the or-axis. In addition, we have the conditions
of continulty of displacements

X, = X, Y, =Y, (21)
the relations for the components 8, and 8, of the velocity of the surface
of discontinuit — —

y Br = X, (244)s By = Y (z244) (22)
and the kilnematic relatlonships
. Y ’ le . Y2'
1 . 1
Bis B b= o8By, S =—sinl, —— =-—cos0 23
Rl sin 91 Y Rl 1s R2 2y R, 2 ( )

Obviously, in this case the relations (21) to (23) make (20} an identity,
and the actual conditlons at the point =z = z_, are given only by the momen-
tum theorem (with (21) to (23) taken, naturally, into account)

’ ' ! X
2,2 (X1 __Xz)—_—%ll—(ﬁl—l—vi——imv> —

~ F (Rt v+ I, (24)

2oy (Vo' — V') = - (Ri+v fl —1—v)—
— TRty 2t =)+ g (25)
e SR 26)

Here ¢, and ¢, are the components of a concentrated force, which may
appear at the point where the membrane separates the surface of the cone and
5 1s the initial thickness of the membrane. In the present case, we must
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put ¢,= Q,= 0 when =z,,<z, . Taking that, together with
f=— VR — X,

into account, we can reduce {24) and (25) to

X 0 .Y 14w . X, 1‘tjﬂ

S kok
T s Xy 1-4+v7 e 4 X 1% v
Ry Lz** — v —}-—7?-—1-—-]~ Rs {z** —t—v }( 28)

From (28) it follows that &,= R,, and (27) implies the continuity of ¥’
and hence of ¥', i.e. X' =x," and 7,'= Y,’, provided that the expressions
within the square brackets are different from zero. Since they can become
zero only fortuiltously, we can draw from the conditions at the polnt z=2z,,,
a general conclusion, that at this point the functions X, ¥', ¥, ¥ and R
are continuous, i.e. only a weak discontinulty occurs at the point where the
membrane separates from the surface of the cone.

Hence, the required solution of (9) which, together with (8) and (10) will
fully defline the solution of our problem, should be constructed according to
the conditions (17) and (18) at the point =z = z, and the condltion of conti-
nuous compatibility with Formulas (10) at the point 2z = Zyy o

Let us fix the values of 98 and v . Then, o, will be the only undeter-
mined element in (10).

Assigning to 1t some value and assuming that 2z = z_,, , we find, that the
values of X, X' and £ at the point 2z = ., which are given uniquely by
{10), supply a full compliment of initial values for first two equations of
(9). Numerical solution of the resulting Cauchy problem leads to the deter-
mination of the points Z=Z.x. and z = Z4R, at which the curves of con-
structed functions XY = X(z) and R = R{z) intersect the lines given by (17)
and (18). 1In general, we find that 2z,y==z,p. In this case we alter z,,
and repeat the procedure until the condition ZyX = Zyr. 1s satisfied.
From this we can see, that our numerical solution is based on determination
of the root =z, ., of Equation

f(Z**) = Z*X(Z**; 9, 01’ V) - Z*R(Z**; e) CI) ’V) = O (29)
which defines the values 2, and 2z, together with the functions ¥ and &

everywhere within the interval 0 s 2 = 1 . To complete the solution, we
must compute the quadrature

b4
Y (z) = “‘”S VIE—(X)d: (30)
Zu
Conditions of continuity of Y at the point =z = 2., leads, together
with (30) and (10), to Zes
Y () =— \ VE—(XVdz=m—U(,,)cos0 (31)

Z.
which ylelds the value of the dimensilonless velocity m of the cone, cor-
responding to the assumed valwes of 8, v and ¢, .
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m=U(z,,)cos0 + 3 VR = (X')dz (32)

These computations can be performed for various values of the parameter
e¢; With resulting solutions corresponding to varlous impact velocltles. How-
ever, the range of possible variation of ¢, over which the above scheme of
motlion is realized, must be found.

The upper boundary of this range is obviously given by the condition
Zyn=™ 2, , While the lower boundary, by z,,=0 .

It can be shown that when g # O , then the condition z,,= O cannot be
achieved irrespective of how small the lmpact velocity is, 1l.e. at any impact
velocity, part of the membrane will envelope the cone, no matter how thin
the latter is. This condition emerges from the consideration of the asymp-
totic behavior of solutions of (9) when z - 0 . If, at some impact velocity
and some value of 9, =2,.= 0 and the membrane was in contact with the cone
at one point only, namely at the vertex of the cone, then the solution of (9)
would exist which would, in the vicinity of the point =z = O , exibit the
asymptotlic property ¥ = aX’, @ = const < O . Analysis of Equations (9)
shows that such an asymptotic behavior is possible only when ¢ = — «» . This
proves the above assertlon and at the same time implies, that In the case of
the point impact (9 = O) at the membrane with constant velocity, meridional
cross section of the deformed membrane exhibits a cusp at the point of impact.

Consequently, the lower boundary of the range of variation of e, is equal
to zero, since the solution of (10) tends to zero as ¢;~ O although, when
g # 0, 1t 1s contained in the complete solution of the problem for arbitrary
impact velocity and tends to zero together with this velocity, 1.e. when
m- 0, @g=0.

Let us now determine the upper boundary of the range of varlation of ¢; .
This is easily done by inserting the values of 1, {z,) and P&, {(z,} given by
(10), into (17) and (18). This 1s equivalent to the condition z, .= Z,
defining max g, . As a result, we obtaln two equatlons defining max ¢,
and the corresponding value of x, =¥, =%, . The respective formulas are

X (Z*o}——((l sin 8) Ze0 R, (Z*o)—-a

Qzao)simn® QG
0@ —2F(2, L a1 ), a={1-, A=sind  (33)

” 22 1 z% 1
X)) = 21— e = [+ TRreE=

V1—z2+m1+}21—z3 (34)

z

02 (2) = — 01/ (7) =

Ri(2g0) — & _ Xa(240) — (25in0) 500

Q (ze0) Q (Z40) SIn O

max ¢y —
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Asymptotic formulas may be found useful in constructing the solutlon for
small 8 . Letting 5 1in (33) and (3%) tend to zero, we obtain the asymp-~
totic equation for Zy4o

P(Z400) X2 (2400) = Zxoo [R2 (Zaoo) — (1 + V)]

Q(z 6)
00Q(z 6)°
The obtained result is interesting: as 9§ - 0, 2z, tends to the 1limit-
ing value &,00 , 1.e. the coordinate of the point at which the membrane
separates from the surface of the cone is, in the absence of the intermediate
region z,.= r, , independent of § for emall values of § . Naturally,
the impact velocity increases with decreasing o , because ¢g,~« and nm
behaves similarly to o, (see (22)).

X2 (2400
) (35)

P(z) = llm €1 oo —

The procedure described above allows us tec solve the prcblem for ¢,<max o,
and for impact velocities m not exceeding m = m(max e,) At high impact
velocities, the mode of motion corresponds to the complete contact with the
cone over the interval O s z = 2z, and over the reglion of radial motion
Z,s 2z < 1 , but here the components of the localized force ¢, and ¢, will
no longer be equal to zero. Solution in the reglon O < z < z, will, as
before, be defined by Formulas (10) and in the region z,s2 <1, by Formu-
las (8); constants o and o, and the value of 2z, should, however, be
found by another method. Condition ¥, (z,)= 7Y (z,)=0 ylelds U(z,)cosg=m
and this makes it possible to express the parameter ¢, in terms of m and
Z, in the form

:C(*)_(Véw—:ixvz*)/z*lﬁv<—;‘s A1 7\;+1Z ) (36)

Condition 1, (z,) = r.(z,) together with (8) and (10), ylelds

- Zy— M1tanb
c=c(2,) = oy (37)
Equation of conservation of mass at =z = z, 18, as we noted before, ful-
filled automatically and 1t only remains to satisfy the momentum theorem,
1.e. the relations (24) and (25) in which z,, is replaced with &, . Then,
these relations together with (8),(10),(36) and (37) allow us to express ¢,
and ¢, in terms of z, . If we denote by o the angle of friction between
the materials of the membrane and the cone, 1.,e, ¢ = tan"'/ where [/ 1is
the coefficlent of friction between the membrane and the cone, then, assum-
ing that the localized force (¢,, ¢,) makes the angle ¢ with the normal,

we obtaln the relation @ = q mn(e _ @) (38)

Substituting into it the above-mentioned expressions for ¢, and ¢, in
terms of 2z, , we obtain the equation defining #, and upon solving 1it, we
arrive at the complete solution of the problem for the corresponding values
of velocities within the considered interval. At the same time 1t should be
checked whether slipping of the membrane on the cone at the point gz = z,
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occurs, 1.e. whether the condition U{(z,)—2z,U’(z,)s0 holds. 1Ir, at
some impact velocity the conditions (38) and

U(zx) — 25U (24) =0 (39)
are fulfilled simultaneously, then this velocity divides the velocity range
under consideration into two parts, in one of which slipping takes place and
(38) holds, while in the other slipping 1s absent and (39) holds. Critical
value of z, is easily found from the availlable formulas. It seems, that
the motlon without slipping occurs first and takes place up to the critical
velocity, after which we have the motion with slipping.

The above scheme deflnes the solutlon for the range of velocities over
which 2,< 1 . When m = cot § , we have z,= 1 , and the solution should
be constructed in a different way when m > cot A . In this case the region
of radial motlon cannot exist and we have z,> 1, the value of which 1s
found simply from 2,=m tan 4 . This ylelds a single discontinuilty 2z = z,
and the problem cannot be solved, unless another discontinulty =z = z,,< z,
1s introduced in the region where the solution 1is given by Formulas of the
type (10). This is completely analogous to the development occurring in the
problem on the impact of a wedge on a thread [1].
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