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The problem of computation of parameters of motion of a thin elastic membrane 
under the Impact of a rigid body, was considered by various authors (see cl] 
together with bibliography) without, however, yielding a rational aolutlon. 
This paper presents a full qualitative analysis of solution of this problem 
for the case of normal Impact of a circular cone moving with constant velo- 
city on an infinite elastic membrane of constant thickness. Although this 
Is the simplest case, It Is Important, 
characteristic features of the problem. 

Insofar as It brings to light the 
In the "membrane approximation the 

thickness of the layer Is found to be an unessential parameter, therefore 
the problem, as postulated by us, Is self-similar and Its solution Is reduc- 
ible to the problem for ordinary differential equations. 

In the formulation of our problem we shall use the basic relations given 

In Cl]. We shall take the plane y I 0 In the cylindrical coordinate 

tern r , cp , y to represent the middle surface of the membrane and we 

assume the cone to be moving along the oy-axis with constant velocity 

Then, the equations of motion will be 

sys- 
shall 

uo - 

(1) 

(2) 

where u and w are the displacements of the points of the middle surface 

In the y- and r-directions, respectively; r Is the Lagranglan coordinate 

of a point on the middle surface of the membrane, t la the time, p is the 

density of the membrane material, 0, and cm are the stress components 

referred to the Initial areas of boundaries at which they are applied and 

strain components are given by 

el=[(l +$)’ +($-)2r-1, eQ +_ 

For the elastic membrane we have 

at = &(et + wQ), aQ = + leQ + yet) 1 
where E and v are the Young's modulus and Poisson's coefficient, 
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respectively. In fact, the relations (4) define, in the present case, the 
elastic law. 

Elimination of stress and strain from(l)to(4)yield.s two equations for u 

and w. Supplementary initial conditions are 

2.4 (r, 0) = w (r, 0) = 0 (5) 
and the boundary condition at the point of Impact 

w (0, t) = 0, 24. (0, t) = v,t (6) 

In addition, functions u and w should obviously satisfy the kinematic 

conditions resulting from the possible relative poeltlonlng of the membrane 

and the cone (the membrane may partially envelope the cone, with the rest 

remaining outside the cone). Unimown functions u and w depend therefore 

on the independent variables r and t and on the parameters 0, vO, E, v 

and p (28 Is the cone angle) of the problem, which Is, consequently, self- 

similar and has a solution of the form 

u = a,tY (2; Y, m, 6,), w + r = a,tX (2; v, m, 0,) 

Z=J- ( E i 
‘I2 

a& ’ an zz p (1 _q’ ’ 
m=_f!?_ 

a0 
In this manner our problem 1s reduced to the determination of functions 

X and Y satisfying the corresponding ordinary differential equations and 

boundary conditions. It can be shown that, in general, three distinct 

regions of variation of d exist, and the above functions are defined In 

eaoh of these regions In a different way. We shall not be concerned with 

the outermost region F > U,t , I.e. E > 1 where w 5 u = 0 . In the 

region a,,51 5 1 we have [l] 

Y E 0, x = 2 - cwl (z), c = const 

WI (2) E In if -r/l - -f ‘,; “’ 
z (Z*<~Zl) (8) 

This Is the region of purely radial motion of the elements of the membrane, 

and Its outer boundary Is formed by the elastic wavefront r=l. Its Inner 

boundary z - I* and the constant o are not given In advance and should be 

determined In the course of solution of the problem. In the region 

XHSX LX* where the membrane Is deflected, without however coming into 

contact with the surface of the cone, functions X and Y are the solution 

of 

R’= [X-((1+v)zlx’~zR(I+v--R) 
zz (1 - z’) R 9 

y'= flc’l-=(x’)” (9) 

satisfying some boundary conditions which shall be specified later, at the 

points x - x,, and x = I,,,, . Equations (9) ar obtained from (1) to (4) 

and (7). The magnitude x - a,, defining the point of contact between the 

membrane and the cone, Is also Mown. 
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Finally, ln the region 

the cone and functions X 

X = U (2) sin 8, 
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0 S 2 s I** the membrane envelopes the surface of 

and Y are given by 

Y = m - U (2) cos 0, R = U ‘(2) 
1+v U (4 = j + k z + c&F i 

h 
2 , 

+, h+l; q 

where ?I. = sin 8, c1 = Con&, and F is a hypergeometrlc function [I] 

(10) 

Here It Is the constant c1 which is the unknown parameter to be deter- 

mined. In this manner, the sought functions X and Y are defined in the 

regions Z*L 2 s 1 and 0 5 z S. z++ by the finite formulas (8),(10) and(ll) 

respectively, and by ordinary differential equations (9) In the Intermediate 

region z**s E 5 a* . The choice of the solution of (9) and the determina- 

tion of parameters I,++, z*, c and c1 should be performed with the aid of 

conditions of compatlblllty at the points I = E* and ~=a,,,,. Obviously, 

the most suitable conditions will be the cond$tlons of continuity of X and 

Y. Further, the usual conservation laws (of mass and momentum) should be 

preserved at these points, which correspond, physically, to the expanding 

surfaces of discontinuity. 

Let us first consider the conditions at the point I = z+ . Using the 

subscripts 1 and 2 to denote the values at 2 < x* and I > I+ , respectively, 
we obtain the condition of conservation of mass 

p--z+z*xs (p-x, + Z,X~')COST + (Y1-zz,Y1')sinr 
_ 

R2 Rl 
(12) 

and the momentum theorem 

(p - x1 + z*xs’) (X,' - XI') 2 = Ra + $ Xz - 

- [Rl+~X1-_(l+Y)]Cw (P=$) 03) 

-(p-xXf+~,xer)Yl~~=[R1+~X1-(~+Y)]sinr (14) 

where b 1s the velocity of propagation of the discontinuity along the 

or-axis and y is the angle between the meridional elements of the membrane 

on both sides of the discontinuity. Supplementlng(12) to (14) we have the 

obvious equalities 
XI = x,, Y, = 0, P = X2, R, = X, (15) 

together with the kinematic relationships 

Yl' sinr =-- 
Rl * COST=2 (16) 

Condition (12) becomes, by virtue of (15) and (16), an Identity, while 

(13) and (14), together with (8) and the condition Y'# 0, yield 

RI (z,) = v-r.2 (z*) - (I$_ 4 z* 
z* (z*‘- 1) (17) 
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Xl (Z:J == x, (Z*) = z* - c (3,) w1 (Tit) 

_ :’ 

c (z*) :=- I* 
wl’(z*)(z*‘-- l)-- Yz*-'W,(~*) 

In this manner, we have expressed all the unknowns at the point 2 = z*, 

In terms of zc . Formula (19) gives the parameter c from (8) in terms of 

a* ' while the relations (17) and (IS), together with the condition &(z*f=O. 

fully define at E - tt, the conditions of transition from (8) to the solu- 

tion of (q), which in turn defines the solution of our problem In the region 

z+*52 S a'*. Next we shall consider the conditions at the point a = z++ . 

Equation of the conservation of mass has, in dimensionless variables, the 

form 
fP,-xl+ z**Xi')sin0i--((a,-- YX + zeeYj’) Cot381 

R1 

_ 

= (;3, --xz+z** Xz')sin 02 -(Pi/---Y, -L z*.+Y~')Gos~~ - 
R.2 PO) 

Here subscripts 1 and 2 denote the limiting values of the corresponding 

magnitudea on both sides of the surface of discontinuity and e1 and e2 are 

the angles of inclination of the elements of the membrane on both sides of 

the discontinuity, towards the or-axis. In addition, we have the conditions 

of continuity of displacements 

x, = x,7 Y, = Y‘J (21) 

the relations for the components 6, and 8, of the velocity of the surface 

of discontinuity 
Pr = x, @**)7 P, = y G&C*> (221 

and the kinematic relationships 

Xl’ 
, 

sin&, XL=- co9 01, xi 
---=I 

RI RI 
- = sin&, +- 

RZ 
= -cos02 

L 
(23) 

Obviously, In this case the relations (21) tu (23) make (20) an identity, 

and the actual conditions at the point I = z!'+* are given only by the momen- 

tum theorem (with (21) to (23) taken, naturally, Into account) 

z**2(X;-Xa’)=~(R1+v~--l-v) - 

-gf+?2+v~~*-~---)+~p, (24) 

2**2 (Yl' - Y2’)=+$(RlfY~-l -v) - 

-$++Y$+v)++ (25) 

I& = Qi- Qll 
@ai-’ Qu = paJG (26) 

Here Q, and P, are the components of a concentrated force, which may 

appear at the point where the membrane separates the surface of the cone and 
b Is the initial thickness of the membrane. In the present case, we must 



put 4,= 4,= 0 when t**<z* . Taking that, together 

Y’ = - J/-B2 - (X’)Z, 

into account, we can reduce (24) and (25) to 
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From (28) it follows that J?~= A,, and (27) implles the continuity of X' 

and hence of Y', i.e. X,' = Xa' and Y,'= Y,', provided that the expressions 

within the square brackets are different. from zero. Since they can become 

zero only fortuitously, we can draw from the conditions at the point E= tX*, 

a general conclusion, that at this point the functions X, X', Y, Y' and fi 

are continuous, i.e. only a weak discontinuity occurs at the point where the 

membrane separates from the surface of the cone. 

Hence, the required solution of (9) which, together with (8) and (10) will 

fully define the solution of our problem, should be constructed according to 

the conditions (17) and (18) at the point E = z* and the condition ofcontl- 

nuous compatibility with Formulas (10) at the point z = z+* . 

Let us fix the values of 0 and v . Then, c1 will be the only undeter- 

mined element In (10). 

Assigning to It some value and assuming that E - .?++ , we find, that the 

values of X, X' and R at the point E = I+* which are given uniquely by 

(lo), supply a full compliment of initial values for first two equations of 

(9). Numerical solution of the resulting Cauchy problem leads to the deter- 

mination of the points z= zex and z=z*., at which the curves of con- 

structed functions X = X(E) and R = R(z) intersect, the lines given by (17) 

and (18). In general, We find that .Z*,s#z.& In this case we alter P++ 

and repeat the procedure until the condition 2*X = &R. is satisfied. 

From this we can see, that our numerical solution is based on determination 

of the root a,, of Equation 

f @*a = Z&Z**; 8, Cl, V) - z*R(z& 8, Cl, V) = 0 (2% 

which defines the values I+* and z* together with the functions Y and R 

everywhere within the interval 0sts1. To complete the solution, we 

must compute the quadrature 

Y (2) = - \ 1/J{” _ (X’)? (jz 
. 

Conditions of continuity of Y at the point z = Z_ leads, together 

with (30) and (lo), to =*t 

Y(z.+.J===- j ‘1/~2-(XI)1d~=n~-.~'(;,;,)~~~e (31) 

which yields the value of Lhe dimensionless velocity m of the cone, cor- 

responding to the assumed values of 8, v and o1 . 
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(33) 

These computations can be performed for various values of the parameter 

o1 with resulting solutions corresponding to various Impact velocltles. How- 

ever, the range of possible variation of c1 over which the above scheme of 

motion is realized, must be found. 

The upper boundary of this range is obviously given by the condition 

I++- z,, , while the lower boundary, by E++= 0 . 

It can be shown that when 0 f 0 , then the condition z*+= 0 cannot be 

achieved irrespective of how small the impact velocity Is, i.e. at any impact 

velocity, part of the membr~e will envelope the cone, no matter how thin 

the latter Is. This condition emerges from the consideration of the asymp- 

totic behavior of solutions of (9) when z - 0 . If, at some impact velocity 

and some value of 8, z+*= 0 and the membrane was In contact with the cone 

at one point only, namely at the vertex of the cone, then the solution of (9) 

would exist which would, in the vicinity of the point t = 0 , exiblt the 

asymptotic property Y f ad', a - const < 0 . Analysis of Equations (9) 

shows that such an asymptotic behavior Is possible only when a ---a .This 
proves the above assertion and at the same time implies, that In the case of 

the point Impact (R = 0) at the membrane with constant velocity, meridional 

cross section of the deformed membrane exhibits a cusp at the point of impact. 

Consequently, the lower boundary of the range of varlatlon of o1 is equal 

to zero, since the solution of (10) tends to zero as ol- 0 although, when 

e#0, it Is contained In the complete solution of the problem for arbitrary 

Impact velocity and tends to zero together with this velocity, i.e. when 

m-0, ol"O. 

Let us now determine the upper boundary of the range of variation of cl . 
This is easily done by lnsertlng the values of Xl(z,) and A,(.?,) given by 

(IO), into (17) and (18). This is equivalent to the condition dS*- I, 

defining max o1 . As a result, we obtain two equations defining max c1 

and the corresponding value of x* =***-I*0 . The respective formulas are 

X2 (a*~) -(a sine) Z*O = R2 (z*o) - a 

Q (z*o) sin Q V’ (z*of 

Q cz) = zap(+, k&t-, A, + 1; z2) , a = I&, h = sin@ (33) 

x's@)= z jl-~~~(Os(:;,jWl(t))--Vl' 
h(z) = p + 

9 
-1 

YO~(Z)/O1(5) -" I 

O?(Z) =rz -6Io1'(z) = ---y--‘ , 
y-2 +In14-n=-T 

~~ 
z 

(34) 

Rz (zso)- a = Xz(zeo) - (a sin '4 --*II 
maxcl= Q'(z*o) * --T---- 

Q (:&sin 6 
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Asymptotic formulas may be found useful In constructing the solution for 

small 9 . Letting 9 In (33) and (34) tend to zero, we obtain the asymp- 

totic equation for E+~ 

~,(~*oo) x2 (z*oo) = .Qnn[R2(Gnn)-(1 + Y)l 

g(z) G I.&$~ ) Cl ILO + x2 (z*oo) 
0 

The obtained result is Interesting: as 13 - 0 , z,,~ tends to the llmlt- 

lng value xBoo , I.e. the coordinate of the point at which the membrane 

separates from the surface of the cone 13, In the absence of the Intermediate 

region H++= a+ , Independent of 9 for small values of 9 . Naturally, 

the Impact velocity Increases with decreasing g , because cl- m and m 

behaves similarly to c1 (see (22)). 

The procedure described above allows us to solve the problem for cl<maxal 

and for Impact velocities m not exceeding m = m(max c,) At high Impact 

velocities, the mode of motion correspond3 to the complete contact with the 

cone over the Interval 0 5 I =Z z,, and over the region of radial motion 

z*s 2 s 1 , but here the component3 of the localized force qr and 4, will 

no longer be equal to zero. Solution In the region 0 i z i I,, will, a3 

before, be defined by Formula3 (10) and In the region x+, Lx s 1 , by Formu- 

las (8); constants 0 and o1 and the value of I,, should, however, be 

found by another method. Condition V,(z,)- Ya(r,) -0 yields Il(z,)cos 9-m 

and this makes lt possible to express the parameter cl In terms of m and 

z,, in the form 

Cl = Cl (2,) = 1/p_& -~+*‘+ +, ht_l;~*~) (36) 

Condition X,(r,) = X,(r,) together with (8) and (lo), yields 

z*-mtme 
c = c (z*) = - o1 (z*) (3’) 

Equation of conservation of mass at I = I,, 13, as we noted before, ful- 

filled automatically and It only remains to satisfy the momentum theorem, 

I.e. the relations (24) and (25) In which I+* 13 replaced with a,, . Then, 

these relations together with (8),(10),(x6) and (37) allow u3 to express 4, 

and 4, In terms of I+ . If we denote by cp the angle of friction between 

the materials of the membrane and the cone, I.e. cp = tan-'/ where / Is 

the coefficient of friction between the membrane and the cone, then, assum- 

ing that the localized force (qr, 4,) makes the angle cp with the normal, 

we obtain the relation 
41, = qr tan (0 - rp) (38) 

Substituting Into It the above-mentioned expressions for q. and q, in 

term3 of I,, , we obtain the equation defining a+ and upon solving It, we 

arrive at the complete solution of the problem for the corresponding values 

of velocities within the considered Interval. At the same time it should be 

checked whether slipping of the membrane on the cone at the Point I - I,, 
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Occurs, I.e. whether the condition u(z,)---zz,U'(z,)# 0 holds. If, at 

some Impact velocity the conditions (38) and 

lJ(z*)-z*U'(z*)= 0 (39) 

are fulfilled simultaneously, then this velocity divides the velocity range 

under consideration Into two parts, In one of which slipping takes place and 

(38) holds, while In the other slipping Is absent and (39) holds. Crltlcal 
value of t+ Is easily found from the available formulas. It seems, that 

the motion without slipping occurs first and takes place up to the critical 

velocity, after which we have the motion with slipping. 

The above scheme defines the solution for the range of velocities over 

which c,,< 1 . When m - cot 8 , we have H+= 1 , and the solution should 
be constructed In a different way when m > cot q . In this case the region 

of radial motion cannot exist and we have Z*' I , the value of which Is 
found simply from E+- m tan A . This yields a single discontinuity z = zi 

and the problem cannot be solved, unless another discontinuity z = z+*c zi 

Is Introduced In the region where the solution Is given by Formulas of the 

type (10). This Is completely analogous to the development occurring In the 

problem on the Impact of a wedge on a thread Cl]. 
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